
Preexistence revisited

Roland Ducournau

LIRMM – Université de Montpellier, France

ducournau@lirmm.fr

Julien Pagès

LIRMM – Université de Montpellier, France

julien.pages@lirmm.fr

Jean Privat

Université du Québec à Montréal, Canada

privat.jean@uqam.ca

Colin Vidal

LIRMM – Université de Montpellier, France

colin.vidal@lirmm.fr

ABSTRACT
Preexistence is a property which asserts that the receiver
of a given call site has been instantiated before the current
invocation of the considered method [Detlefs and Agesen,
1999]. Hence, preexistence is a mean to avoid on-stack re-
placement when a method must be recompiled during its
own activation.

In the original proposition, preexistence is an immutable
property, its analysis is purely intra-procedural, and it con-
siders only values. In this paper, we propose to extend it to
a simple inter-procedural static analysis that considers types
too, not only values. A consequence of this extension is that
preexistence is no longer immutable, hence the analysis is
not monotonous.

Keywords
object-oriented programming, just-in-time compilation, on-
stack replacement, code patching, preexistence, inlining, de-
virtualization, multiple inheritance, perfect hashing

1. INTRODUCTION

Just-in-time recompilation and repair
The e�ciency of modern runtime systems like the Java vir-
tual machine (JVM) relies on dynamic, just-in-time compi-
lation, which is generally triggered by dynamic class loading.
Two optimizations are essential: (i) devirtualization involves
substituting a static call to a more complex late-binding se-
quence; (ii) inlining can then be applied to a static call,
in order to inline the callee in the caller. It may occur, in
these systems, that the dynamic loading of a class invali-
dates an assumption underlying the optimized compilation
of a method which, thus, must be deoptimized and recom-
piled. A problem arises when the invalidated method is cur-
rently active, for instance when its current invocation has
provoked the aforementioned class loading. Let us consider
the following Java-like example

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICOOOLPS’15, July 10, 2015, Prague

Copyright 2015 ACM ...$15.00.

main() {

new A().baz();

}

class A {

void baz() { this.foo().bar(); }

void bar() { ... }

A foo() { return new B(); }

}

class B extends A {

void bar() { ... }

}

In face of such a program, a plausible sequence of actions
might be as follows:

1. main is compiled, then invoked;

2. new A provokes the loading of class A;

3. A.baz is then compiled with an aggressive optimization
of both foo and bar invocation, on the basis of the
currently valid assumption that both methods are not
redefined in any loaded subclass of A; for instance, the
calls are devirtualized, i.e. compiled as a static call,
respectively, to A.foo and A.bar;

4. then, the invocation of foo provokes the loading of
class B, thus invalidating the previous assumption: when
returning from foo an instance of B, the static call to
A.bar will be erroneous, and it must be repaired.

In the following, we will use the repair term for the emer-
gency recompilations that must be done while the code to
recompile is active.

This is, of course, a simplified example which can be
complicated in several directions, for instance with inlining,
multi-threads or reflection. Anyhow, the compiled code of
A.baz must be repaired, and there are roughly three ways
to do it:

Guards: A first approach just involves avoiding any re-
pairing, by guarding the optimized version and exe-
cuting the non-optimized one when the guard fails.
Class guards and method guards have been considered
[Detlefs and Agesen, 1999]. The former is costless but
too narrow, while the later is accurate, but more costly.
However, this drawback has been mostly fixed with
thin guards [Arnold and Ryder, 2002].

On-stack replacement: In a second approach, the opti-
mization is not guarded, and the A.baz method is re-
compiled in order to deoptimize the call to bar; then,

the new version is assigned to the corresponding entry
of the method table of A. It can be done lazily, with a
trampoline. This recompilation will account for future
invocations of baz, but it cannot solve the point of the
current invocation. Then, on-stack replacement [Höl-
zle et al., 1992, Fink and Qian, 2003, Steiner et al.,
2007] involves patching the stack in order to replace
the return address of the call to foo by the correspond-
ing address in the newly compiled code.

Code patching: An alternative, called code patching
[Ishizaki et al., 2000], avoids the complete recompila-
tion of a method by just patching the current compiled
code of A.baz, replacing the static call to A.bar by a
call to a stub function implementing the virtual call
that dispatches to either A.bar or B.bar. This stub
function can be generated on the fly, or may have been
precompiled at the first compilation of A.baz. Thus,
code patching avoids on-stack replacement, too.

Guards are robust and safe, but they su�er from two draw-
backs: (i) critical parts of the code must be duplicated; (ii)
whereas one may expect that the need for dynamic repair
should decrease asymptotically during the execution of a
program, guards will be checked perpetually. The two other
guardless techniques are complementary and fairly delicate,
since both of them involves patching, either the stack or the
code, and patching is not that portable. Moreover, choosing
between them is not obvious. Overall, all three techniques
work well, but it would be far better to be able to avoid all
of them.

Preexistence
Preexistence is a property which asserts that the receiver
of a given call site has been instantiated before the current
invocation of the considered method [Detlefs and Agesen,
1999]. Preexistence o�ers an important guarantee on com-
piled methods: when a method must be recompiled, the
current compiled code of the call sites whose receivers is
preexisting to the method invocation remains correct and
doesn’t need to be repaired. The consequence of the guar-
antee is that method repair (on-stack replacement or code
patching) remains needed only for methods (i) that are cur-
rently active, and (ii) contain an invalidated call site with a
non-preexisting receiver.

In [Detlefs and Agesen, 1999], the authors used preexis-
tence to decide on inlining for static calls with a preexisting
receiver, and the proposed preexistence analysis was purely
intra-procedural. In the context of the Java language, two
kinds of receiver were considered, namely invariant argu-
ments, i.e. the formal parameters of the method to which no
assignments are made, and immutable private fields, i.e. pri-
vate fields that are only assigned to in a constructor. Their
experiments on a small set of Java benchmarks showed that
the proportion of call sites with a preexisting receiver was
highly significant. Overall, preexistence analysis is very of-
ten cited in the literature, and considered as a well-tried
technique, complementary to the repair techniques proposed
by the various authors, e.g. [Ishizaki et al., 2000, Arnold and
Ryder, 2002].

The need for better preexistence
In this paper, we enlarge preexistence in both its usage and
its analysis. We consider languages with full multiple inher-

itance, implemented with perfect hashing [Ducournau and
Morandat, 2011, 2012]. With multiple inheritance, espe-
cially with such an implementation, one has to consider
three kinds of object-invocation sites, for method invoca-
tion, attribute (aka field) access and subtyping tests (e.g.
casts). Each one can be implemented in a direct, e�cient
way, like in single inheritance, or in an indirect way implying
perfect hashing, and involving a longer, less e�cient code se-
quence. The details are irrelevant, here, and the only point
to keep in mind is that repairing a method could concern
all of these three kinds of sites. In contrast, in languages
with multiple subtyping, like Java, the considered optimiza-
tions don’t concern at all attribute access. Moreover, the
literature on these dynamic optimizations doesn’t consider
subtyping tests, whereas they are eligible to optimizations
similar to devirtualization. Indeed, when the test is always
true or always false, it is similar to a static call for method
invocation. Otherwise, when the target type is an interface,
it can be optimized as a class test if the interface is directly
implemented by a single class.

Whereas code patching is a practical solution that de-
serves to be considered for non-inlined method invocation,
because it just involves replacing a function call with another
function call, it seems to be markedly less e�cient with at-
tribute access and subtyping tests because both are compiled
into inlined sequences of code, and the point is really crucial
for attribute access. There is thus a need for a more accurate
preexistence analysis, which would increase the proportions
of receivers that are proven to be preexisting. Therefore, in
this paper, we extend preexistence analysis to other forms
of expressions, especially through inter-procedural analy-
sis. This makes us distinguish between value-preexistence
and type-preexistence. As it will appear that the new inter-
procedural type-preexistence analysis has the drawback to
make preexistence volatile, we also present the principle of
the experiments that would allow us to specify a protocol of
method repair and recompilation o�ering a good trade-o�
between the e�ciency of the generated code and the e�-
ciency of the protocol.

Outline
Section 2 presents the preexistence principle and our ex-
tended preexistence analysis. The next section, a work in
progress, will present the results of our first experiments in
the interpreter of the Nit language [Privat, 2008]. The paper
ends with conclusion and a few prospects.

2. PREEXISTENCE ANALYSIS

2.1 Vocabulary
We consider a simplified intermediate representation (IR)

involving, for each method, the following items:

• a list of input parameters, including a receiver (this);

• a set of literals (mostly for null and enumerated val-
ues);

• sets of object-invocation sites, splitted in four kinds:

– call sites, for method invocation,
– read sites, for attribute reading,
– write sites, for attribute assignment,

– and cast sites, for subtyping tests or casts (we
assume here that the cast site returns its receiver,
typed with the cast target type);

each site has a receiver, and a call site has a list of
extra arguments, and both receiver and arguments are
expressions;

• a set of instantiation sites (they are not object-invocation
sites);

• a set of variables, each variable depending on one or
more expressions; for the sake of simplification, depen-
dence between variables is assumed to be acyclic;

• a distinguished variable for the value returned by the
method;

• an expression is either a parameter, a literal, a vari-
able, a call site, an instantiation site, a cast site or a
read site.

Finally, the dispatched methods of a call site are the meth-
ods that could be invoked according to classes currently
loaded. They might be computed with class hierarchy anal-
ysis (CHA [Dean et al., 1995]). In this intermediate rep-
resentation, everything is static and immutable, apart from
the dispatched methods which form ever-increasing sets.

It is worth noting that the two terms invocation expres-
sion and invocation site denote the same entity from di�er-
ent points of view: the former considers the callees and their
returned value which may be preexisting, or not, according
to the call arguments and the dispatched-method returned
values, whereas the latter considers the caller and denotes
a site whose receiver may be preexisting, which has an in-
fluence on the way it must be compiled and repaired. For
instance, in the x.foo().bar() expression of our introduc-
tory example, the preexistence of the invocation expression
x.foo() is a condition of the preexistence of the site calling
bar().

We don’t consider any intra-procedural control flow analy-
sis apart from the dependence between variables. Especially,
we don’t mind whether foo is invoked before or after bar.

2.2 Load and compile protocol
In order to be able to specify our limited form of inter-

procedural analysis, which is static although performed dy-
namically, at runtime, we need to specify how the code will
be incrementally analysed. We thus assume some abstract
load and compile protocol based on the general idea that
both class loading and method compilation are lazy and
performed just-in-time, via trampolines. Furthermore, we
assume that the preexistence analysis will take place when
a method is compiled.

In order to make things more precise, one might imagine
several variants.

Variant 1
1. a class A is loaded when an instantiation site new A is

executed for the first time;

2. a method foo defined in class A is compiled when exe-
cuting a call site dispatches to this method for the first
time;

3. a method is recompiled the first time a call site dis-
patches to it after the invalidation of one of its invo-
cation sites.

Variant 2
The first rule is replaced with the following:

1. a class A is loaded when an instantiation site new A is
compiled for the first time;

In both variants, (i) a call site may dispatch to a method
that is not compiled yet; (ii) loading a class doesn’t com-
pile anything, and it just implies computing the layout of
its future instances1. Moreover, in Variant 1, (iii) an instan-
tiation site new A may be compiled when the A class is not
loaded yet.

The benefits of Variant 2 would be to avoid extra recom-
pilations, in the cases where the instantiation is e�ectively
done. In contrast, the extra costs would be to load a class
that is not used because its instantiation is guarded, and
loading this class would enlarge the call graph with never-
compiled methods. The benefit/cost balance of these vari-
ants should be tested.

Trampolines
Without loss of generality, we assume that the underly-
ing implementation of objects associates with each object
a method-table containing, for each method known by the
object class, the address of the implementing code. Then,
lazy compilation involves filling the still uncompiled method
entries with a trampoline, i.e. the address of a stub function
which will compile the method, fill the method entry with
the resulting address, then jump to it. Thus, lazy compi-
lation of a method which is called via late-binding is both
simple and e�cient, and can be done at a reasonably high
level.

Strangely enough, the lazy compilation of a function called
statically is less simple as it requires some low-level code
patching, for instance by replacing, in the original compiled
code, a jump to the trampoline address by a jump to the
newly compiled address. This would be the case for an in-
stantiation site in Variant 1, for a monomorphic call site
in all variants, and for calls to super and to constructors.
Anyway, we assume that we are able to do it, and we will
assume, for Variants 1 and 2, that there is some blackbox
mechanism for calling a still unknown function.

Variant 3
Alternatively, one might imagine a third variant, in which
all methods called via a static call would be compiled when
their caller is compiled. Then, there is no need to resort to
obscure blackboxes. This would still preserve the dynamic
aspect of class loading, provided that all call sites are not
static.

2.3 Preexistence of expressions
In principle, as preexistence is used only to select how an

invocation site is compiled, it should be a matter of dynamic
types, not of values. However, the original definition was
formulated only in terms of values, as if the only way to
assert that the type of an expression is preexisting would be
1We don’t consider, here, such things as the initialization of
static variables in Java.

to assert that its value is preexisting. Moreover, there is at
least one case where the preexistence of a value is needed.
Hence, our definition of preexistence will be two-fold:

• an expression is type-preexisting if its dynamic type
must necessarily have been loaded before the current
invocation of the including method;

• an expression is value-preexisting if its value must nec-
essarily have been instantiated before the current in-
vocation of the including method.

Of course, value-preexistence implies type-preexistence.
The rules for proving preexistence are the following:

Literal: all literals are value-preexisting;

Parameter: all input parameters are value-preexisting;

Variable: a variable is value (resp. type) preexisting i� all
the expressions which it depends on are value (resp.
type) preexisting;

ReadSite: a read site is preexisting if the receiver is value-
preexisting and the read attribute is guaranteed to be
immutable; this guarantee can be o�ered by specific
language rules like final in Java or val in Scala; then,
the read-site is value-preexisting, too;

Return: the return of a method is value (resp. type) preex-
isting i� its distinguished return variable is value (resp.
type) preexisting (and, of course, the method has been
already compiled)2.

NewSite: an instantiation site is type-preexisting i� the
instantiated class is preexisting, i.e. it has been already
loaded;

CallSite: a method-invocation expression is value (resp.
type) preexisting if

• its receiver and arguments are all value (resp.
type) preexisting, and

• all its dispatched methods have a value (resp.
type) preexisting returned value;

CastSite: a cast-site expression is value (resp. type-preexi-
sting) if its receiver is value (resp. type-preexisting);

FinalTypeSite: an object-invocation expression is type-
preexisting if the static type of the expression3 can-
not be specialized (e.g. it has been declared final in
Java), and the corresponding class is already loaded;

Otherwise: if none of the previous rules applies, one must
conclude to non-preexistence.

For the sake of simplification, we don’t consider, here, all
expressions returning primitive types: such literals, param-
eters and variables are simply removed, and method invo-
cations are just considered as returning nothing. For the
same reason, we don’t distinguish specifically the call sites
2The Return rule assumes that the code of the method is
available to analysis. If it is not the case, e.g. for precompiled
methods, the return must be assumed to be non-preexisting.
A manual preexistence tag might be envisaged, too.
3This is the only need for static types in the intermediate
representation.

that can only invoke a single method, because the invoked
method has been declared static or final, or the dynamic
type of the receiver is statically known: they are just special
cases of the general CallSite rule.

The original proposition considered only value-preexistence,
through the Parameter and ReadSite rules. The essence of
type-preexistence is captured by the NewSite rule. While
this rule is obvious, we must confess that it took us a long
time before identifying it. Besides, it is worth noting that
this rule is absolutely useless for a purely intra-procedural
analysis like the original preexistence proposition. Indeed,
since the dynamic type of an instantiation site is known
at compile-type, static optimizations can be done that will
never require to be repaired. Hence, the main novelty, here,
comes from coupling both NewSite and CallSite rules. Be-
sides, the CastSite and FinalTypeSite are also new. The
impact of the compilation protocol lies in the NewSite rule.
With Variant 2, all instantiation sites are type-preexisting.

Overall, non-preexistence originates from three possible
causes:

• instantiating a non-loaded class (only in Variant 1);

• reading of a mutable attribute;

• a call-site expression whose all dispatched methods are
not compiled yet.

Preexistence of object-invocation sites
Besides expressions, we also consider preexistence for object-
invocation sites.

Site: An object-invocation site is preexisting i� its receiver
is type-preexisting.

We don’t mind whether a preexisting site is value- or type-
preexisting. Indeed, both would be optimized in the same
way.

Without loss of generality, a method may contain both
preexisting and non-preexisting object-invocation sites. A
conservative recompilation policy would restrict optimiza-
tions to preexisting sites. Then, if the recompilation of a
method is triggered during its activation, it will concern
only its preexisting sites, and the execution of all the sites
will safely continue.

In contrast, if one wants to follow a more aggressive op-
timization policy, by optimizing the non-preexisting sites,
on-stack replacement or code patching will be required.

Therefore, the middle course might be to

• aggressively optimize all preexisting object-invocation
sites;

• optimize, but not inline, all non-preexisting call sites;
code patching can be e�ciently used for repairing those
sites;

• not optimize at all read, write and cast sites that are
not preexisting.

It must be noticed that a method must be recompiled
when one of its optimized preexisting sites becomes non-
preexisting, even if the site itself is not invalidated. Con-
versely, when a non-preexisting site becomes preexisting, its
recompilation might be considered in order to optimize it,
but this recompilation is not mandatory. The transition of

a non-preexisting site to preexistence may have two possible
causes, a new class loading (NewSite rule), or the comple-
tion of the call-graph by compiling a dispatched method
(CallSite rule).

An example
Let us consider the following sketch of code:

class A { void foo() {..} }

class B extends A { .. }

class C extends B { void foo() {..} }

class Amaker {

A factory() { return new A() }}

class Bmaker extends Amaker {

A factory() { return new B() }}

void bar(Amaker mk) { mk.factory().foo() }

main () {

step1();

step2();

}

void step1() { bar(new Amaker()); }

void step2() { bar(new Bmaker()); }

Then the overall scenario of Variant 2 would be as follows:

1. the main function is compiled with two blackbox calls
to step1 and step2;

2. the step1 function is first compiled, which implies
loading Amaker, then executed;

3. bar is then compiled: as mk is preexisting, the call to
factory can be static, but foo is not compiled yet,
which implies a blackbox;

4. the call to factory is executed: Amaker.factory is
compiled, A is loaded, and the return of factory is pre-
existing; factory is executed, before A.foo is compiled
then executed; now, bar could be recompiled because
both calls to factory and foo can be optimized;

5. step2 is then compiled and executed; Bmaker is first
loaded; as a new dispatched method is now possible
for the factory call-site, both factory and foo sites
must be deoptimized, the latter because its receiver is
no longer preexisting; luckily, there is nothing to do
because the optimization was still waiting a new call
to bar;

6. bar is then recompiled and executed, thus loading B; at
the end, the factory call-site has a preexisting return,
and bar could be recompiled in order to optimize the
foo call site.

It is worth to examine a few variations:

• if step1 and step2 were inlined in main, then Bmaker

would be loaded at the same time as Amaker; hence,
the call to factory would never be static

• if bar was inlined in step1 or step2, the call to factory

would be a static call, even after the loading of Bmaker,
and the resulting expression would be preexisting.

Indeed, preexistence is always relative to the enclosing method,
and inlining doesn’t preserve it. Hence, the arithmetics of
inlining may be rather counter-intuitive, since it is possible
that 1 + 1 = 1, when one inlining is possible in both the
caller and the callee, but not at the same time. The inlining
decision may thus be crucial, since one inlining in the caller
might prevent several inlinings in the callee.

Preexistence attribute analysis
The immutable field analysis of [Detlefs and Agesen, 1999]
is translated, here, into the ReadSite rule. This particular
case is the only reason of the need for distinguishing value-
preexistence from type-preexistence. Immutability can be
deduced from specific kanguages features, with such key-
words as final, read-only or val. Otherwise, as discussed
in [Detlefs and Agesen, 1999], immutability could be de-
duced from the static analysis of a class, as the fact that the
attribute is not assigned, apart from in a constructor, and
a constructor cannot be applied twice to the same object.
Of course, assigning the attribute must be reserved to the
considered class, for instance it is declared private.

However, immutable fields don’t fit well to our target
language, Nit [Privat, 2008], because both privacy and im-
mutability cannot be expressed strictly. Therefore, for the
sake of the experiment, we introduced special manual an-
notations to allow programmers to assert that an attribute
can be considered as immutable.

More accurate inter-procedural preexistence analysis
The formulation of the CallSite rule is very restrictive, since
it forces the arguments of the call-site to be preexisting,
even when the value returned by the dispatched methods
does not depend on their input parameters. Therefore, be-
sides returning just a boolean value, the preexistence anal-
ysis might return, for each value-preexisting expression, a
dependence set consisting of the subset of input parameter
positions the expression depends on. The rules are modified
as follows:

Parameter: an input parameter at position p has the de-
pendence set {p}. This rule is the source of the in-
formation, and the following rules will compute which
parameters (identified by their position) can flow down
to the method return, or to other method invocations.

Variable: the dependence set of a variable is the union of
the dependence sets of all the expressions it depends
on;

Return: the dependence set of a method return is that of
the distinguished variable.

ReadSite: a preexisting immutable read site has the de-
pendence set of its receiver;

CallSite: a method-invocation expression is preexisting i�,
for each dispatched method,

• the returned value is preexisting
• all the arguments of the call site corresponding to

the returned dependence set are preexisting;

moreover, the dependence set of the expression is the
union of the dependence sets of the call-site arguments
whose corresponding input parameter belongs to the
returned dependence set;

CastSite: the dependence set of the expression is that of
its receiver.

All other dependence sets are empty. The interest of this
extension is that the new CallSite rule can conclude to the
preexistence of a call-site expression even when one of its
arguments is not preexisting, because the corresponding pa-
rameter is not used in the returned values of the dispatched
methods. The CallSite rule can be stated more formally as
follows. Let DSet(expr) denotes the dependence set of the
expr expression, and DSet(fun) denotes the dependence set
of the return of the fun method. Let us assume that the call-
site foo(arg1,..,argk) dispatches to the set dispatch(foo).
Then, this call-site expression is preexisting i�

’x.foo œ dispatch(foo),
the return of x.foo is preexisting

and ’i œ 1..k, (i œ DSet(x.foo) ∆ argi is preexisting)

Moreover,

DSet(foo(arg1, .., argk)) =
€

x.fooœdispatch(foo)

! €

iœDSet(x.foo)

DSet(argi)
"

Dependence sets must also be used for type-preexistence,
because the combination of type-preexistence and value-pre-
existence gives type-preexistence, along with the dependence
set of the latter. For instance, let us consider the following
function:

A foo (A x, B y) {

if <some condition>

return x;

else return new A(y);

}

Its return depends on x and new A(y). The former is
value-preexisting, with {1} as dependence set, while the lat-
ter is only type-preexisting, with an empty dependence set.
Therefore, the return of foo, is only type-preexisting, but
its dependence set is {1}. An expression calling foo can be
preexisting only if its first argument is preexisting, and even
if its second argument is not preexisting.

About recursion
The above set of rules is correct were it not for recursion.
In case of recursion, when the preexistence of an expression
depends on itself, one must follow an optimistic approach:
if non-preexistence cannot be proven, then one can conclude
to preexistence.

Therefore, in practice, the computation of the preexis-
tence of an expression is based on a 3-value recursive func-
tion, which returns

• non-preexisting, if a rule concluding to non-preexistence
has been encountered;

• recursive, if no rule concluding to non-preexistence
has been encountered, but a recursion has been met;

• preexisting, otherwise.

The top-level function which computes the preexistence
of a site calls the recursive function on the receiver, and re-
places its hypothetical recursive value with preexisting.

What about dependence sets in a recursive call? An exact
computation might be more di�cult, and a conservative as-
sumption would be to consider that the dependence set of a
recursive call contains all the input parameters.

2.4 Computing preexistence
In the original preexistence analysis, preexistence and non-

preexistence were immutable properties, which were com-
puted only once. However, in the extended preexistence
analysis, the preexistence of an entity is no longer immutable.
Indeed, class loading can enlarge the call graph and add to
a currently preexisting method-invocation expression a dis-
patched method whose return is not preexisting. In the
opposite direction, a non-preexisting method-invocation ex-
pression may become preexisting when a still uncompiled
dispatched method is compiled and has a preexisting return.

Therefore, for the sake of performance, it is essential to
try to avoid to recompute preexistence, hence to memoize it.
However, preexistence dependences may be tricky to main-
tain, and it might be simpler to memoize preexistence only
in the immutable cases.

Preexistence and non-preexistence are immutable in only
a few cases:

Parameter, Literal, ReadSite: the conclusions of these
rules are immutable in all cases;

NewSite: preexistence is immutable, but non-preexistence
is not (only in Variant 1);

CallSite: non-preexistence may be immutable, if it results
from the immutable non-preexistence of an argument
or of a dispatched method return; in contrast, preexis-
tence is never immutable, since the call graph can be
enlarged (apart from the call sites that are immutably
static);

FinalTypeSite: preexistence is immutable, but non-preexistence
is not;

CastSite: preexistence is immutable if it is immutable for
the receiver;

Variable: the preexistence of a variable is immutable if it
depends only on immutably preexisting expressions;
in particular, the preexistence of a method return may
be immutable; in contrast, its non-preexistence is im-
mutable, if it depends on at least one immutably non-
preexisting expression;

Site: invocation sites have immutable preexistence i� their
receiver has.

Immutable non-preexistence originates from a single cause,
mutable-attribute read sites. Immutable preexistence orig-
inates from parameters, literals, immutable-attribute read
sites, instantiation sites and final return types.

2.5 The case of reflection
Reflection is usually an obstacle to static analysis. How-

ever, for preexistence, the obstacle is not insuperable, at
least when reflection is specified as in Java. By default, one
might consider that all reflective methods are precompiled
since their code is not available: hence their return would be
non-preexisting. It is however possible to extend the preex-
istence analysis to the main methods of the reflection API.

For Java, one first observes that all attributes and methods
typed by Class resort to the FinalTypeSite rule, since Class

has been declared final. Moreover, one can complete the
preexistence analysis of reflection with the following rules:

class: the A.class expression is value-preexisting i� class A

is already loaded; otherwise, this expression is a black-
box, and its execution will trigger the loading of A, like
new A;

getClass: an invocation expression of this method is value-
preexisting i� its receiver is type-preexisting;

newInstance: an invocation of this method is type-preexisting
i� its receiver is value-preexisting.

Finally, it is impossible to say anything special about
Class.forName, which can provoke class loading, hence can-
not be value-preexisting.

Both getClass and class rules assume that reflection is
not lazy. If the instantiations of Class were lazy, i.e. if the A

class could be loaded without creating the value of A.class,
we could never conclude to value-preexistence, and both
rules would be invalid. Moreover, in a fully reflective setting
where Class could have subclasses, even type-preexistence
would be unreachable.

3. EXPERIMENTS
We are currently implementing the proposed preexistence

analysis in the Nit interpreter, and we plan a series of exper-
iments in order to assess the benefits of the approach and
the e�ect of the discussed variations.

Up to now, our inter-procedural preexistence analysis can
detect preexisting method-call expressions. The conditions
are not too restrictive, since the considered methods must re-
turn either null (or some hypothetical literal, e.g. instances
of Java enum), an input parameter, an immutable attribute,
an instantiation, a final-type expression, or a call-site ex-
pression returning, recursively, one of them. One might
think that many call-sites are concerned. However, an ex-
tra condition might dramatically restrict the scope of the
inter-procedural preexistence analysis: a call-site expression
can be considered as preexisting only if all its dispatched
methods have been compiled, hence executed at least once.
Typically, a factory method would have a preexisting return,
but the expressions calling this method would be preexisting
only if all the method implementations have been called at
least once.

In its original specification, preexistence had a nice prop-
erty, namely it was immutable and was computed only once
for each invocation site. Moreover, apart from inlining, the
possible optimizations for a given call site were essentially
monotonic. Indeed, a call site could be successively imple-
mented as a static call, then as in single inheritance, and
finally, in a way compatible with full multiple inheritance.
Overall, everything was monotonic, hence acyclic, with a
small number of possibilities, and one might expect high ef-
ficiency, i.e. a low number of recompilations. Apart from
preexistence which was not considered, it was the main con-
clusion of our first experiments [Ducournau and Morandat,
2012].

In contrast, the extended preexistence analysis proposed
here is no longer monotonic or acyclic. In the inter-procedural
analysis, preexistence is rarely immutable. For instance, a

call-site expression might alternate preexistence and non-
preexistence as the call graph grows up, a class loading
switching the expression to non-preexistence, then a method
compilation switching it back to preexistence. Therefore, a
call site might alternate, too, optimizations and deoptimiza-
tions. Therefore, there is an obvious threat to e�ciency
in this proposition, and experiments are required in order
to specify a precise protocol that would keep the original
e�ciency while providing an e�ective improvement in the
number of optimized preexisting sites.

So, our experiments will compute various statistics during
the execution of a program:

• the number of preexisting sites that can be optimized;

• the number of invocation-site expressions that can be
considered as preexisting;

• for each of the previous sttaistics, the number of time
a given rule applies;

• the number of recompilations triggered by an invocation-
site invalidation, or by a transition from preexistence
to non-preexistence;

• the number of transitions from preexistence to non-
preexistence, and vice-versa.

Various protocols (e.g. the variants described in Section 2.2)
will be compared with respect to theses statistics. We expect
to be able to present our first results at the workshop.

4. CONCLUSIONS AND PROSPECTS
This paper has presented a preexistence analysis which

extends previous work by distinguishing between type- and
value-preexistence. The introduction of type-preexistence
allows us to take advantage of instantiation sites and final
types, through a simple dynamic, inter-procedural control-
flow analysis. We are currently experimenting this extended
preexistence analysis in the Nit interpreter, in order to sim-
ulate the behaviour of a JIT compiler based on this preexis-
tence analysis, by counting the number of entities that are
preexisting or non-preexisting, optimized, or non-optimized,
memoized or not memoized, according to various protocols
of compilation, recompilation and repair. Our work has been
motivated by multiple inheritance, for which a more accu-
rate preexistence analysis was required, but the proposed
preexistence analysis could be used as well with languages
like Java or C#. Actually, as the static types are used only
marginally in the FinalTypeSite rule, the extended preex-
istence analysis could be used, as well, for languages like
Smalltalk or Pharo, for instance with the implementation
proposed in [Ducournau, 2012].

References
M. Arnold and B.G. Ryder. Thin guards: a simple and e�ec-

tive technique for reducing the penalty of dynamic class
loading. In B. Magnusson, editor, Proc. ECOOP’2002,
LNCS 2374, pages 498–524. Springer, 2002.

J. Dean, D. Grove, and C. Chambers. Optimization
of object-oriented programs using static class hierar-
chy analysis. In W. Oltho�, editor, Proc. ECOOP’95,
LNCS 952, pages 77–101. Springer, 1995. doi: 10.1007/
3-540-49538-X_5.

D. Detlefs and O. Agesen. Inlining of virtual meth-
ods. In R. Guerraoui, editor, Proc. ECOOP’99, LNCS
1628, pages 258–277. Springer, 1999. doi: 10.1007/
3-540-48743-3_12.

R. Ducournau. Perfect hashing for method dispatch with
dynamic typing and dynamic compilation. In ICOOOLPS
Workshop, 2012.

R. Ducournau and F. Morandat. Perfect class hashing and
numbering for object-oriented implementation. Softw.
Pract. Exper., 41(6):661–694, 2011. doi: 10.1002/spe.
1024.

R. Ducournau and F. Morandat. Towards a full multiple-
inheritance virtual machine. Journal of Object Technol-
ogy, 12:29, 2012. doi: 10.5381/jot.2012.11.3.a6.

S. J. Fink and F. Qian. Design, implementation and evalua-
tion of adaptive recompilation with on-stack replacement.
In Proc. CGO’03, pages 241–252. IEEE Computer Soci-
ety, 2003. ISBN 0-7695-1913-X. doi: 10.1109/CGO.2003.
1191549.

Urs Hölzle, Craig Chambers, and David Ungar. Debugging
optimized code with dynamic deoptimization. In Proc.
PLDI ’92, pages 32–43. ACM, 1992. ISBN 0-89791-475-9.
doi: 10.1145/143095.143114. URL http://doi.acm.org/

10.1145/143095.143114.

K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and
T. Nakatani. A study of devirtualization techniques for
a Java just-in-time compiler. In Proc. ACM OOPSLA
’00, pages 294–310, 2000. ISBN 1-58113-200-X. doi:
10.1145/353171.353191.

Jean Privat. Nit language. http://nitlanguage.org/,
2008.

E. Steiner, A. Krall, and C. Thalinger. Adaptive inlining
and on-stack replacement in the Cacao virtual machine.
In Proc. PPPJ ’07, pages 221–226. ACM, 2007. ISBN
978-1-59593-672-1. doi: 10.1145/1294325.1294356.

