
Preexistence revisited

R. Ducournau, J. Pagès, J. Privat, C. Vidal

LIRMM – Université de Montpellier & CNRS
Université du Québec à Montréal

ICOOOLPS, Prague, July 2015

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 1 / 24



Motivations

Plan

1 Motivations

2 Preexistence

3 Experiments with preexistence

4 Future work and conclusions

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 2 / 24



Motivations

Motivations : Virtual Machines

Work under the Open-World Assumption
dynamic class loading
lazy method compilation

Performance results from greedy Current-World optimizations
devirtualization
inlining

Consequence
need for dynamic recompilations

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 3 / 24



Motivations

Motivations : the Repair Problem

How to recompile a method ...
... while it is running

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 4 / 24



Motivations

Motivations : the Repair Problem

3 well-known techniques
guards
stack-patching (aka OSR)
code-patching

Still better to avoid them

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 5 / 24



Motivations

Motivations : Multiple Inheritance

In a Java-like language
Optimisations apply to

method invocation (mainly)
subtyping tests (marginally)
and interfaces

In multiple inheritance
Optimisations apply to

attribute access, too

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 6 / 24



Motivations

Motivations : Multiple Inheritance

Inlined mechanisms
attribute access
subtyping tests

Repair techniques
stack-patching : does not apply at all
code-patching : does not apply efficiently

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 7 / 24



Motivations

Motivations : Multiple Inheritance

Object representation
implementation method attribute subtyping
inlining x
static x x
single subtyping (SST) x x x
perfect hashing (PH) x x x
unknown x x x

Optimizations involve substituting
inlining to static (methods only)
static to SST (except attributes)
SST to PH

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 8 / 24



Preexistence

Plan

1 Motivations

2 Preexistence

3 Experiments with preexistence

4 Future work and conclusions

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 9 / 24



Preexistence

Preexistence

A property ensuring that
a reference will remain compatible
with the current compiled code of a method
during the current activation of this method

Preexistence of the receiver avoids the need for hot repair

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 10 / 24



Preexistence

Original preexistence of value

The referenced object has been created before entering the method

2 original rules [Detlefs and Agesen, Ecoop’99]
an input parameter is preexisting,
an immutable attribute of a preexisting object is preexisting

Example
def bar(x) { x.foo()}
x is preexisting and the call to foo can be safely optimized

Assessment
Between 20% and 60% of call sites have a preexisting receiver

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 11 / 24



Preexistence

Extended preexistence of type

The object’s class has been loaded before entering the method

The main rule
new A() is preexisting iff A is already loaded

Example
def bar(x) {

if condition then y=x else y=new A() end
y.foo() }

y is preexisting and the call to foo can be safely optimized

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 12 / 24



Preexistence

Extended preexistence of type

Auxiliary rules
any expression typed with a final type is preexisting
a method-invocation expression is preexisting iff

each invoked method has a preexisting return
each argument corresponding to a returned parameter is
preexisting

Consequence
a call to a factory method is preexisting
provided that all the invocable methods are compiled !

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 13 / 24



Preexistence

Extended preexistence

Pros
extended ⇒ (hopefully many) more preexisting receivers
applied to attribute access and subtyping tests, too

Cons
preexistence is no longer immutable
a preexisting method-invocation becomes non-preexisting when a
class redefining this method is loaded
a method must be recompiled when a site of it switches to
non-preexistence

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 14 / 24



Experiments with preexistence

Plan

1 Motivations

2 Preexistence

3 Experiments with preexistence

4 Future work and conclusions

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 15 / 24



Experiments with preexistence

Experiments with preexistence

The testbed
the Nit language (Jean Privat, UQAM, formerly Prm, LIRMM)
the Nit Closed-World interpreter
the Nit Open-World VM, based on the interpreter
a meta-evaluator benchmark

the Nit interpreter
run in the Nit VM
on a small Nit program (eg fibonacci(4))

statistics at the end of the computation

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 16 / 24



Experiments with preexistence

Statistics of preexistence

Original preexistence
method attribute subtyping total %

preexisting 4044 3802 248 8094 58%
non preexisting 4216 916 734 5866 42%
total 8260 4718 982 13960

for methods, preexistence rate in the middle upper range of the
original paper
even higher for attributes (80%)
there is potential for improvement

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 17 / 24



Experiments with preexistence

Statistics of preexistence

Original non-preexistence
method attribute subtyping total %

potential 4216 916 734 5866 100%
NewSite 1331 80 0 1411 24%
CallSite 1388 255 663 2306 39%
ReadSite 1426 551 68 2045 35%

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 18 / 24



Experiments with preexistence

Statistics of preexistence

Original non-preexistence
method attribute subtyping total %

potential 4216 916 734 5866 100%
NewSite 1331 80 0 1411 24%
CallSite 1388 255 663 2306 39%
ReadSite 1426 551 68 2045 35%
improvable 2719 335 663 3717 63%

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 18 / 24



Experiments with preexistence

Statistics of preexistence

Extended preexistence
total %

improvable 3717 100%
NewSite 1390
CallSite 16
improved 1398 38%

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 19 / 24



Experiments with preexistence

Experiments with preexistence

Pros and cons
most of the improved sites have static concrete types
inter-procedural analysis has marginal effect

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 20 / 24



Experiments with preexistence

Experiments with preexistence

Pros and cons
most of the improved sites have static concrete types
inter-procedural analysis has marginal effect

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 20 / 24



Future work and conclusions

Plan

1 Motivations

2 Preexistence

3 Experiments with preexistence

4 Future work and conclusions

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 21 / 24



Future work and conclusions

Experiments with inlining

But preexistence rate is meaningless
preexistence depends on programming style
any program can be transformed into a 100%-preexistence
program
preexistence is not preserved by inlining

def bar(y) { y.baz() }
bar(x.foo()) ⇐⇒ x.foo().baz()

Next step involves experimenting inlining
inline bar or baz, not both

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 22 / 24



Future work and conclusions

Other perspectives

Assessing the recompilation cost
method recompilations
transitions between implementations
transitions between preexistence and non-preexistence

Extended protocols
with guards or patches ?

Other benchmarks

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 23 / 24



Future work and conclusions

Conclusion

Extended preexistence : an interesting idea
which needs a deeper study

(LIRMM+UQAM) Preexistence revisited ICOOOLPS’15 24 / 24


	Motivations
	Preexistence
	Experiments with preexistence
	Future work and conclusions

